PMT

Mark Scheme (Results) January 2010

GCE

Statistics S2 (6684)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA023029 All the material in this publication is copyright © Edexcel Ltd 2010

January 2010 6684 Statistics S2 Mark Scheme

Ques Num		Scheme	ſ	Marks	6
Q1	(a)	$X \sim B(20, 0.05)$	B1	B1	(2)
	(b)	P(X = 0) = $0.95^{20} = 0.3584859$ or 0.3585 using tables .	M1	A1	(2)
	(c)	$P(X > 4) = 1 - P(X \le 4)$	M1		
		=1-0.9974			
		= 0.0026	A1		(2)
	(d)	Mean = $20 \times 0.05 = 1$	B1		
		Variance = $20 \times 0.05 \times 0.95 = 0.95$	B1		
			7	Fotal	(2) [8]
		Notes			
Q1	(a)	1 st B1 for binomial 2 nd B1 for 20 and 0.05 o.e These must be in part (a)			
	(b)	M1 for finding $(p)^{20}$ $0 this working needs to be seen if answer incorrect to gain the M1A1 awrt 0.358 or 0.359.$			
	(c)	M1 for writing 1 - $P(X \le 4)$			
		or $1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)]$ or $1 - 0.9974$ or $1 - 0.9568$			
		A1 awrt 0.0026 or 2.6 $\times 10^{-3}$, do not accept a fraction e.g. 26/10000			
	(d)	1st B1 for 1 2nd B1 for 0.95			
		NB In parts b, c and d correct answers with no working gain full marks			

Ques		Scheme	Marl	۲S
Q2	(a)	P(X < 0) = F(0)	M1	
		$=\frac{2}{6}=\frac{1}{3}$	A1	(2)
	(b)	$f(x) = \frac{dF(x)}{dx}$	M1	
		$f(x) = \frac{dF(x)}{dx}$ $f(x) = \begin{cases} \frac{1}{6} & -2 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$	A1 B1	(3)
	(c)	Continuous Uniform (Rectangular) distribution	B1	(1)
	(d)	Mean $= 1$	B1	. /
		Variance is $\frac{(42)^2}{12} = 3$	M1 A1	(3)
	(e)	$\mathbf{P}(X=1)=0$	B1	(1)
		Notes	Total	[10]
Q2	(a)	M1 for attempting to find F(0) by a correct method eg subst 0 into F(x) or $\int_{-2}^{0} \frac{1}{6} dx$		
		Do NOT award M1 for $\int_{-2}^{0} \frac{x+2}{6} dx$ or $\frac{1}{2} \times \frac{1}{3} \times 2$ both of which give the correct		
		answer by using F(<i>x</i>) as the pdf A1 1/3 o.e or awrt 0.333 Correct answer only with no incorrect working gets M1 A1		
	(b)	M1 for attempting to differentiate $F(x)$. (for attempt it must have no <i>xs</i> in) A1 for the first line. Condone < signs B1 for the second line. – They must have 0 $x < -2$ and $x > 4$ only.		
	(c)	B1 must have "continuous" and "uniform" or "Rectangular"		
	(d)	B1 for mean = 1		
		M1 for attempt to use $\frac{[\pm (b-a)]^2}{12}$, they must subst in values and not just quote the		
		formula, or using $\int_{-2}^{4} x^2 (their f(x)) - (their mean)^2$, including limits. Must get x^3		
		when they integrate. A1 cao .		
	(e)	B1 cao		

Ques		Scheme	Mark	S
Num				
Q3	(a)	$Y \sim \text{Po}(0.25)$	B1	
		$P(Y=0) = e^{-0.25} = 0.7788$	M1 A1	(3)
	(b)	$X \sim Po(0.4)$ P(Robot will break down) = 1 - P(X = 0)	B1	. ,
		$=1-e^{-0.4}$	M1	
		=1-0.067032		
		= 0.3297	A1	(3)
	(c)	$P(X=2) = \frac{e^{-0.4}(0.4)^2}{2}$	M1	
		= 0.0536	A1	(2)
	(d)	0.3297 or answer to part (b) as Poisson events are <u>independent</u>	B1ft B1 dep	(2)
			Total	
		Notes		
Q3	(a)	B1 for seeing or using $Po(0.25)$		
		M1 for finding P(Y=0) either by e^{-a} , where <i>a</i> is positive (<i>a</i> needn't equal their λ) or using tables if their value of λ is in them		
		Beware common Binomial error using, $p = 0.05$ gives 0.7738 but scores B0 M0 A0 A1 awrt 0.779		
	(b)	B1 for stating or a clear use of $Po(0.4)$ in part (b) or (c) M1 for writing or finding $1 - P(X=0)$ A1 awrt 0.33		
	(c)	M1 for finding P(X=2) e.g $\frac{e^{-\lambda}\lambda^2}{2!}$ with their value of λ in		
		or if their λ is in the table for writing $P(X \le 2) - P(X \le 1)$ A1 awrt 0.0536		
	(d)	 1st B1 their answer to part(b) correct to 2 sf or awrt 0.33 2nd B1 need the word independent. This is dependent on them gaining the first B1 SC 		
		Use of Binomial. Mark parts a and b as scheme. They could get (a) B0,M0,A0 (b) B0 M1 A0 In part c allow M1 for ${}^{n}C_{2}(p)^{2}(1-p)^{n-2}$ with "their n" and "their p". They could get (c) N DO NOT GIVE for $p(x \le 2) - p(x \le 1)$	M1,A0	
		In (d) they can get the first B1 only. They could get (d) B1B0		

Question Number	Scheme	Marks
Q4 (a)	$\int_{0}^{3} k(x^{2} - 2x + 2)dx + \int_{3}^{4} 3kdx = 1$	M1
	$k \left[\frac{1}{3}x^3 - x^2 + 2x \right]_0^3 + \left[3kx \right]_3^4 (=1) \text{or} k \left[\frac{1}{3}x^3 - x^2 + 2x \right]_0^3 + 3k (=1)$ 9k = 1	A1 M1 dep
	9k = 1 $k = \frac{1}{9} **given** $ cso	A1 (4)
(b)	For $0 < x \le 3$, $F(x) = \int_0^x \frac{1}{9} (t^2 - 2t + 2) dt$	M1
	$=\frac{1}{9}\left(\frac{1}{3}x^{3}-x^{2}+2x\right)$	A1
	For $3 < x \le 4$, $F(x) = \int_{3}^{x} 3k dt + \frac{2}{3}$	M1
	$=\frac{x}{3}-\frac{1}{3}$	A1
	$ \begin{pmatrix} 0 & x \leq 0 \end{pmatrix} $	
	$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{1}{27}(x^3 - 3x^2 + 6x) & 0 < x \le 3 \\ \frac{x}{3} - \frac{1}{3} & 3 < x \le 4 \end{cases}$	
	$F(x) = \begin{cases} \frac{x}{2} - \frac{1}{2} & 3 < x \le 4 \end{cases}$	B1 ft B1
	$ \left(\begin{array}{ccc} 5 & 5 \\ 1 & x > 4 \right) $	(6)
(c)	$E(X) = \int_0^3 \frac{x}{9} (x^2 - 2x + 2) dt + \int_3^4 \frac{x}{3} dx$	M1
	$= \frac{1}{9} \left[\frac{1}{4} x^4 - \frac{2}{3} x^3 + x^2 \right]_0^3 + \left[\frac{1}{6} x^2 \right]_3^4$	A1
	$=\frac{29}{12}$ or 2.416 or awrt 2.42	A1 (2)
(d)	F(m) = 0.5	(3) M1
	$F(2.6) = \frac{1}{27}(2.6^3 - 3 \times 2.6^2 + 6 \times 2.6) = awrt \ 0.48$	M1
	$F(2.7) = \frac{1}{27}(2.7^3 - 3 \times 2.7^2 + 6 \times 2.7) = awrt \ 0.52$	A1
	Hence median lies between 2.6 and 2.7	A1 dA
		(4) Total [17]

		Notes
Q4	(a)	1 st M1 attempting to integrate at least one part (at least one $x^n \rightarrow x^{n+1}$) (ignore
		limits) 1 st A1 Correct integration. Limits not needed.
		2^{nd} M1 dependent on the previous M being awarded. Adding the two answers
		together, putting equal to 1 and have the correct limits. $2^{nd} A1 cso$
		2 AI CSO
	(b)	1st M1 Att to integrate $\frac{1}{9}(t^2 - 2t + 2)$ (at least one $x^n \to x^{n+1}$). Ignore
		limits for method mark
		1 st A1 $\frac{1}{9}\left(\frac{x^3}{3} - x^2 + 2x\right)$ allow use of <i>t</i> . Must have used/implied use of limit of 0.
		This must be on its own without anything else added
		2nd M1 attempting to find $\int_{3}^{x} 3k + \dots$ (must get $3kt$ or $3kx$)
		and they must use the correct limits and add $\int_0^3 \frac{1}{9} (t^2 - 2t + 2)$ or $\frac{2}{3}$
		or use $+C$ and use $F(4) = 1$
		$2^{nd} A1 \frac{x}{3} - \frac{1}{3}$ must be correct
		1 st B1 middle pair followed through from their answers. condone them using $<$ or \leq incorrectly they do not need to match up
		2^{nd} B1 end pairs. condone them using $<$ or \leq . They do not need to match up
		NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0 < x \le 3$ is correct they can get M1 A1 otherwise M0 A0. If $3 < x \le 4$ is correct they can get M1 A1 otherwise M0 A0. If $3 < x \le 4$ is correct they can get M1 A1 otherwise M0 A0. If $3 < x \le 4$ is correct they can get M1 A1 otherwise more award B1ft if they show no working unless the middle parts are correct.
	(c)	1^{st} M1 attempting to use integral of x f(x) on one part
		1 st A1 Correct Integration for both parts added together. Ignore limits. 2 nd A1 cao or awrt 2.42
	(d)	1^{st} M1 for using $F(X) = 0.5$. This may be implied by subst into $F(X)$ and comparing
	(u)	answers with 0.5.
		2nd M1 for substituting both 2.6 and 2.7 into "their $F(X)$ " – 0.5 or "their $F(X)$ "
		1^{st} A1 awrt 0.48 and 0.52 if using "their F(X)" . and awrt -0.02 and 0.02 or if using "their F(X)" 0.5
		Other values possible. You may need to check their values for their correct equation
		NB these last two marks are B1 B1 on ePEN but mark as M1 A1
		2^{nd} A1 for conclusion but only award if it follows from their numbers. Dependent on previous A mark being awarded
		SC using calculators
		M1 for sign of a suitable equation
		M1 A1 for awrt 2.66 provided equation is correct A1 correct comment
L		

Quest Numb		Scheme	Marks
Q5	(a)	$X \sim Po(10)$ $P(X < 9) = P(X \le 8)$ = 0.3328	B1 M1 A1 (3)
	(b)	$Y \sim Po(40)$ Y is approximately N(40,40) P(Y > 50) = 1-P(Y \le 50) = 1-P(Z < \frac{50.5-40}{\sqrt{40}}) = 1-P(Z < 1.660) = 1-0.9515 = 0.0485	M1 A1 M1 A1 A1 (6)
		N.B. Calculator gives 0.048437. Poisson gives 0.0526 (but scores nothing)	Total [9]
Q5	(a)	Notes B1 for using Po(10) M1 for attempting to find $P(X \le 8)$: useful values $P(X \le 9)$ is 0.4579(M0), using Po(6) gives 0.8472, (M1). A1 awrt 0.333 but do not accept $\frac{1}{3}$	
	(b)	1 st M1 for identifying the normal approximation 1 st A1 for [mean = 40] and [sd = $\sqrt{40}$ or var = 40] NB These two marks are B1 M1 on ePEN These first two marks may be given if the following are seen in the standardisation formula : 40 and $\sqrt{40}$ or awrt 6.32 2 nd M1 for attempting a continuity correction (50 or 30 ± 0.5 is acceptable) 3 rd M1 for standardising using their mean and their standard deviation and using either 49.5, 50 or 50.5. (29.5, 30, 30.5) accept ± 2 nd A1 correct z value awrt ±1.66 or this may be awarded if see $\pm \frac{50.5 - 40}{\sqrt{40}}$ or $\pm \frac{29.5 - 40}{\sqrt{40}}$ 3 rd A1 awrt 3 sig fig in range 0.0484 – 0.0485	

Ques Numl		Scheme	Marks
Q6	(a)	The set of values of the test statistic for which the null hypothesis is rejected in a hypothesis test.	B1 B1
	(b)	X~B(30,0.3)	(2) M1
		$P(X \le 3) = 0.0093$	
		$P(X \le 2) = 0.0021$	A1
		$P(X \ge 16) = 1 - 0.9936 = 0.0064$ $P(X \ge 17) = 1 - 0.9976 = 0.0021$	A 1
		$P(X \ge 17) = 1 - 0.9979 = 0.0021$ Critical region is $(0 \le)x \le 2$ or $16 \le x(\le 30)$	A1 A1A1
	(c)	Actual significance level 0.0021+0.0064=0.0085 or 0.85%	(5) B1
			(1)
	(d)	15 (it) is not in the critical region not significant	Bft 2, 1, 0
		No significant evidence of a change in $p = 0.3$	
		accept H_0 , (reject H_1)	
		$P(x \ge 15) = 0.0169$	(2)
			Total [10]
		Notes	
Q6	(a)	 1st B1 for "values/ numbers" 2nd B1 for "reject the null hypothesis" o.e or the test is significant 	
	(b)	M1 for using B(30,0.3) $1^{st} A1 P(x \le 2) = 0.0021$ $2^{nd} A1 0.0064$	
		3rd A1 for $(X) \le 2$ or $(X) < 3$ They get A0 if they write $P(X \le 2/X < 3)$ 4th A1 $(X) \ge 16$ or $(X) > 15$ They get A0 if they write $P(X \ge 16X > 15$ NB these are B1 B1 but mark as A1 A1	
	(c)	$16 \le X \le 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be <i>X</i> . B1 correct answer only	
	(d)	Follow through 15 and their critical region B1 for any one of the 5 correct statements up to a maximum of B2 – B1 for any incorrect statements	

Ques Num		Scheme	Marks
Q7	(a)	x1p2p $P(X = x)$ $\frac{1}{4}$ $\frac{3}{4}$	
		$\mu = 1 \times \frac{1}{4} + 2 \times \frac{3}{4} = \frac{7}{4} \text{ or } 1\frac{3}{4} \text{ or } 1.75$	B1
		$\sigma^{2} = 1^{2} \times \frac{1}{4} + 2^{2} \times \frac{3}{4} - \left(\frac{7}{4}\right)^{2}$	M1
		$=\frac{3}{16}$ or 0.1875	A1 (3)
	(b)	(1,1,1), (1,1,2) any order, (1,2,2) any order, (2,2,2)	B1
		(1,2,1) (2,1,1) (2,1,2) (2,2,1) all 8 cases considered. May be implied by $3 * (1,1,2)$ and $3*(1,2,2)$	B1 (2)
	(C)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1 M1 A1 M1 A1A1
			(6) Total [11]
		Notes	
Q7	(a)	B1 1.75 oe M1 for using $\sum (x^2 p) - \mu^2$ A1 0.1875 oe	
	(b)	ignore repeats	
	(c)	1 st B1 4 correct means (allow repeats) 1 st M1 for p^3 for either of the ends 1st A1 for 1/64or awrt 0.016 and 27/64 or awrt 0.422 2 nd M1 $3 \times p^2(1-p)$ for either of the middle two $0May be awarded for finding the probability of the 3 samples with mean of either 4/3or 5/3 .2nd A1 for 9/64 (or 3/64 three times) and 27/64 (or 9/64 three times) accept awrt 3dp.3rd A1 fully correct table, accept awrt 3dp.$	

PMT

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023029 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH